p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.95C24, C42.137C23, C24.159C23, C22.155C25, C4⋊Q8⋊48C22, (C4×D4)⋊76C22, (C4×Q8)⋊72C22, C4⋊D4⋊46C22, C4⋊C4.337C23, (C2×C4).145C24, (C2×C42)⋊79C22, (C2×D4).343C23, C4.4D4⋊47C22, C22⋊Q8⋊102C22, (C2×Q8).320C23, C42.C2⋊28C22, C42⋊C2⋊70C22, C42⋊2C2⋊21C22, C22.32C24⋊26C2, C22≀C2.18C22, C4⋊1D4.121C22, C22⋊C4.121C23, (C22×C4).414C23, C22.45C24⋊25C2, C22.54C24⋊14C2, C2.66(C2.C25), C22.D4⋊64C22, C22.34C24⋊28C2, C22.57C24⋊22C2, C22.47C24⋊41C2, C22.33C24⋊26C2, C22.50C24⋊42C2, C22.46C24⋊42C2, C22.56C24⋊18C2, C22.53C24⋊27C2, C22.35C24⋊27C2, C23.36C23⋊63C2, C22.49C24⋊27C2, C22.36C24⋊43C2, (C2×C4⋊C4)⋊95C22, (C2×C22⋊C4).397C22, SmallGroup(128,2298)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.155C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=a, g2=b, ab=ba, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 692 in 477 conjugacy classes, 378 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C23.36C23, C22.32C24, C22.33C24, C22.34C24, C22.35C24, C22.36C24, C22.45C24, C22.46C24, C22.47C24, C22.49C24, C22.50C24, C22.53C24, C22.54C24, C22.56C24, C22.57C24, C22.155C25
Quotients: C1, C2, C22, C23, C24, C25, C2.C25, C22.155C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(2 28)(4 26)(5 18)(6 8)(7 20)(9 29)(11 31)(13 15)(14 24)(16 22)(17 19)(21 23)
(1 6)(2 18)(3 8)(4 20)(5 26)(7 28)(9 22)(10 15)(11 24)(12 13)(14 29)(16 31)(17 27)(19 25)(21 32)(23 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 29)(26 30)(27 31)(28 32)
(1 15 27 23)(2 16 28 24)(3 13 25 21)(4 14 26 22)(5 9 20 29)(6 10 17 30)(7 11 18 31)(8 12 19 32)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (2,28)(4,26)(5,18)(6,8)(7,20)(9,29)(11,31)(13,15)(14,24)(16,22)(17,19)(21,23), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,22)(10,15)(11,24)(12,13)(14,29)(16,31)(17,27)(19,25)(21,32)(23,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,9,20,29)(6,10,17,30)(7,11,18,31)(8,12,19,32)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (2,28)(4,26)(5,18)(6,8)(7,20)(9,29)(11,31)(13,15)(14,24)(16,22)(17,19)(21,23), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,22)(10,15)(11,24)(12,13)(14,29)(16,31)(17,27)(19,25)(21,32)(23,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,9,20,29)(6,10,17,30)(7,11,18,31)(8,12,19,32) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(2,28),(4,26),(5,18),(6,8),(7,20),(9,29),(11,31),(13,15),(14,24),(16,22),(17,19),(21,23)], [(1,6),(2,18),(3,8),(4,20),(5,26),(7,28),(9,22),(10,15),(11,24),(12,13),(14,29),(16,31),(17,27),(19,25),(21,32),(23,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,29),(26,30),(27,31),(28,32)], [(1,15,27,23),(2,16,28,24),(3,13,25,21),(4,14,26,22),(5,9,20,29),(6,10,17,30),(7,11,18,31),(8,12,19,32)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2J | 4A | ··· | 4F | 4G | ··· | 4AA |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2.C25 |
kernel | C22.155C25 | C23.36C23 | C22.32C24 | C22.33C24 | C22.34C24 | C22.35C24 | C22.36C24 | C22.45C24 | C22.46C24 | C22.47C24 | C22.49C24 | C22.50C24 | C22.53C24 | C22.54C24 | C22.56C24 | C22.57C24 | C2 |
# reps | 1 | 3 | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 6 |
Matrix representation of C22.155C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 3 | 1 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 | 1 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 3 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 1 | 2 | 3 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 1 | 2 | 3 |
0 | 0 | 0 | 0 | 1 | 0 | 4 | 3 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,3,0,0,0,0,0,0,0,1],[3,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,2,3,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,3,0,2,4,0,0,0,0,1,3,0,3,0,0,0,0,4,0,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,3,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,1,4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,3,3],[4,0,0,0,0,0,0,0,3,1,4,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3] >;
C22.155C25 in GAP, Magma, Sage, TeX
C_2^2._{155}C_2^5
% in TeX
G:=Group("C2^2.155C2^5");
// GroupNames label
G:=SmallGroup(128,2298);
// by ID
G=gap.SmallGroup(128,2298);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,184,2019,570,1684,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=a,g^2=b,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations